Abstract: SOM (Self-organizing Maps) model
was introduced   to   cluster  
and   analyse on   the  
human   grasping activities of GloveMAPbased  on 
data  reduction  of 
the  initial grasping data. By
acquiring the data reduction of the initial hand grasping  data 
of  the  several 
objects,  it  will 
be  going  to  be
functioned  as  the 
inputs  to  the 
SOM  model. After  the 
iterative learning  of  net-trained, 
all  data  of  the  trained 
network  will  be simulated  
and   finally   self-organized.   The  
output   results   of models’ are farthest approached to the
reality in 3-dimensional grasping features. 
The  experimental  result 
of  the  simulation signal  will 
generate  the  simulate 
result  of  the 
grasping  features from  the 
selected  object.  The whole experiment of grasping features is
derived into three features / groups and the results are satisfactory.
Keywords: Cluster   Analysis, Data   reduction, Fingers grasping, Grasping features, SOM neural networks